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a manyfold excess of acetylene initially present) to produce a 
product ratio of 7.5:1.0:0.24:0.19:0.02 of nido-2,3-C2B4H8, 3- 
CH3-nidc-2-CBSH8, 4-CH3-nido-2-CB5H8, 2-CH3-nido 2-CB5Hs, 
and 1 -CH3-nido-2-CBSH8, respectively. This assessment is made 
after heating the sample at  225 OC and after ca. 15% of the initial 
quantity of pentaborane is still remaining. It is pertinent to note 
that the 3-CH3-nido-2-CB5H8/4-CH3-nido-2-CB5Hs ratio is 3.9 
at the end of the last heating period. This ratio is 0.84 at the end 
of an earlier 215 OC heating period and a value of 1.6 at  the end 
of a 220 OC intermediate heating period. (A very small amount 
of yellow-brown solid material is also produced during the reaction, 
and it is difficult to know whether or not some of this is a result 
of some product decomposition; see elsewhere in this paper). In 
a related study (see Introduction), flash thermolysis (355 "C) of 
2-ethenyl-nido-BSH8 gives 2-CH3-nido-2-CB5H8 (1 5%) ,  3- 
CH3-nido-2-CB5H8 (23%), and 4-CH3-nido-2-CBSH8 (1 3%).22 
Again, the 3-CH3-nido-2-CB5H8 isomer predominates. 

In this regard it is of some interest to note that MP2/6- 
3lG*//3-2lG+ZPE(3-21G) calculations (Table 111) on all of the 
CH3-nido-2-CBSH8 isomers indicate that the order of stabilities 
to be 3-CH3-nido-2-CB5H8 > 4-CH3-nido-2-CB5H8 > I-CH3- 
nido-2-CBSH8 > 2-CH3-nido-2-CB5H8. In additional experiments 
carried out in the present study we discovered that 4-CH3-nido- 
2-CB5H8 will slowly convert to 3-CH3-nido-2-CB5H8 under the 
thermal conditions of its formation. Also, it appears that the 
3-CH3-nido-2-CB5H8 isomer can convert to 4-CH3-nido-2-CB5Hs 
under the same conditions, but because slow B-CH3-nido-2-CB5Hs 
decomposition is occuring simultaneously, it is not possible to 
achieve true equilibrium quantities. But by examination of the 

results from both rearrangement reactions, it seems suggestive 
that the equilibrium ratio at  the rearrangement temperature of 
225 OC is somewhere between 2:l and 3.3:l.O for the 3-CH3- 
nido-2-CB5H8/4-CH3-nido-2-CB5H8 ratio. The ratio suggested 
by MP2/6-31G*//3-21G+ZPE(3-21G) results is 1.9:l. When 
the calculations are carried out at  the MP2/6-31G*//6-31- 
G+ZPE(6-31G) level, the ratio climbs slightly to 2.2:l. Every- 
thing considered, the agreement between the experimentally ob- 
tained and calculational approaches is rather good. There is no 
experimental evidence to suggest that either 1- or 2-CH3-nido- 
2-CB5Hs enter into the equilibrium mixture pot. It does appear, 
though, that the 2-CH3-nido-2-CBsH8 isomer, once produced, is 
more thermally stable toward further reaction than the B- 
CH3-nido-2-CB5H8 isomers. 
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For the extensive family of metal clusters M,Q,L, containing four-coordinate metal (M) sites, no bridging atoms Q, ( a  = 2-4), 
and unidentate terminal ligands (L), a topological procedure for isomer enumeration using a matrix method has been developed. 
The method calculates all possible bridging modalities [n2,n3,n,] for a given formula, which are utilized to generate atom connectivity 
matrices that uniquely define structures. Because of the very large number of possible structures for m Z 4, other constraints 
may be applied in order to afford sets of the more probable structures. The structures of 14 FemQn clusters (Q = S, Se) taken 
as a data base indicate certain structural features of frequent occurrence which define these constraints: M2Q2 rhomb-only 
structures, uniterminal ligation, and rational stereochemistry (usually tetrahedral) at the M sites. The method is outlined and 
is tested and applied, under the various constraints, to clusters of assorted nuclearities. Bridging modalities are calculated for 
known and unknown structures with nuclearities m = 2-9 (I # 0) and for certain cyclic clusters ( I  = 0) of nuclearities m = 18 
and 20. The constraints may be altered to include M sites of higher coordination number. The method rationalizes known 
structures, provides an organizational framework for all structures within its purview, and offers a basis for predicting potentially 
accessible new clusters. Among the latter are uncharacterized protein-bound ironsulfur clusters and the cofactors of nitrogenase. 

Introduction 
An extensive family of metal clusters exists in which the con- 

stituent metal atoms are four-coordinate and are bridged by 

which span the nuclearity range 2-20, present a diversity of 
geometric motifs that illustrate important structural principles. 

chalcogenide atoms to generate a core unit, M,Q,. The best 
known and most highly developed group within this family is 
composed of ironsulfur or -selenium clusters, many of which have 
been studied extensively in this laboratory.'-'3 These clusters, 

(1 )  Berg, J. M.; Holm, R. H. In Iron-Sulfur Proteins; Spiro, T. G., Ed.; 
Wiley-Interscience: New York, 1982; Chapter 1.  

(2) Christou, G.; Sabat, M.; Ibers, J. A,; Holm, R. H. Inorg. Chem. 1982, 
21, 3518. 

( 3 )  Hagen, K. S.; Watson, A. D.; Holm, R. H. J. Am. Chem. SOC. 1983, 
105, 3905. 

(4) Noda, I.; Snyder, B. S.; Holm, R. H. Inorg. Chem. 1986, 25, 3851. 
( 5 )  Snyder, 8. S.; Reynolds, M. R.; Noda, I.; Holm, R. H. Inorg. Chem. 

1988, 27, 595. 

(6) (a) Carney, M. J.; Papaefthymiou, G. C.; Spartalian, K.; Frankel, R. 
B.; Holm, R. H. J .  Am. Chem. Soc. 1988, 110, 6084 and references 
therein. (b) Carney, M. J.; Papaefthymiou, G. C.; Frankel, R. B.; Holm, 
R. H. Inorg. Chem. 1989, 28, 1497 and references therein. 

(7) (a) Snyder, B. S.; Holm, R. H. Inorg. Chem. 19%8, 27, 2339. (b) 
Reynolds, M. S.; Holm, R. H. Inorg. Chem. 1988.27.4494. (c) Snyder, 
B. S.; Holm, R. H. Inorg. Chem. 1990, 29, 274. 

(8) You, J.-F.; Snyder, B. S.; Papaefthymiou, G. C.; Holm, R. H. J .  Am. 
Chem. SOC. 1990, 112, 1067. 

(9) (a) Ciurli, S.; Carrie, M.; Weigel, J. A.; Carney, M. J.; Stack, T. D. 
P.; Papaefthymiou, G. C.; Holm, R. H. J .  Am. Chem. Soc. 1990,112, 
2654. (b) Weigel, J. A,; Holm, R. H. J .  Am. Chem. SOC. 1991, 112, 
4184. 

(10) Weigel, J. A.; Srivastava, K. K. P.; Day, E. P.; Munck, E.; Holm, R. 
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Table I. Possible Bridging Modalities" and Numbers of M2Q2 Rhombs in the Clusters M,Q,L, and Structurally Proven Examples (Q = S, Se, 
Te) 

formula [n22W4la n,6 examplesc n,(obs) ref 
MnQ2w2L4 [2n-2,0,0] n - 1  [FenQ2w2L212-, n -  1 1, 3, 12, 16 

n = 2 (11, 3 (21, 4 (3) 
M3Q4I-3 [3,1,01 3 [Fe3S4(SR)3I2- (4) 3 17-19 
M4QJ-7 [0,3,01 3, 4 [Fe&(NO)7I- (5) 3 20 

[1,1,11 3, 4 

4, 5 
M4Q4L4 [ 0,4,0 I 4-6 [Fe4Q4L4]1-,2-,3- (6)  6 1, 6, 12, 21, 22 

4, 5 
6-9 
6-8 

6-8 
6, 7 
7 ,  8 
7, 8 
7 
8-10 
8-10 
9-12 
21-27 
21-26 
21-26 
21-25 
21-25 
21-24 
21-24 
21-23 
21,22 
21,22 

6 23 
6 5 ,  7 

7c 

8 2, 24 

9 4 

12 25 
24 13 

22 8 

21 11, 13 

a From eqs 1 and 2, with all M atoms four-coordinate and Q atoms p2, p3, or p4 bridging ligands. From eq 3, for structures constructed entirely 
of M2Q2 rhombs. 'Q = S and Se for all cases except 6, for which Q = S, Se, and Te examples are known; L = RS-, ArO-, or halide. dNot a 
rhomb-only structure. 

They range in structural complexity from the simple binuclear 
species [Fe2QzL4lZ- (Q = S, Se; L = RS-, ArO-, halide),' to the 
monocyclic cluster [Na2FelsS30]8-,8~13 and finally to bicyclic 
[Na,Fe20Se3s]9-.'1~13 The FemQn cluster set is composed of 14 
members of different structures that, however, are unified by 
several common features: (i) metal atoms exhibit (distorted) 
tetrahedral coordination; (ii) ligand bridge atoms occur in one 
or more of the multiplicities kz, p3, and p4; (iii) core structures 
are built up largely or exclusively from edge- and/or vertex-shared 
Fe2Q2 rhombs; (iv) except for the terminal metal atoms in 
[FenQkZL4])t-, metal atoms form three or four Fe-Q core bonds 
and, in the presence of three such bonds, no more than one Fe-L 
terminal ligand bond with anionic unidentate ligands; and (v) 
metal-metal bonding is weak. 

Feature i is a reflection of the tetrahedral stereochemical 
preference of four-coordinate Fe(11,III). Concerning feature iii, 
12 of the 14 structural types are composed entirely of rhombs; 
elsewhere we have introduced the useful concept of cluster buildup 
by different patterns of rhomb fusion.8 The four-coordination of 
feature iv, which includes uniterminal ligation, is set by the size 
and charge of anionic Q and L ligands; coordination numbers 
exceeding four have been achieved only with ~ h e l a t i n g , ~ , ' ~  cy- 
clopentadienyl,ls or small neutral ligands.I0 Feature v results in 
antiferromagnetic s in coupling of metal centers, but the Fe-Fe 

configurations at  the metal sites, are not consistent with strong 
separations (22.7 II ), as well as the local open-shell electron 

1 
1 0  11 

M.rQcL7 10.3.31 MsQsL8 [0,0.61 . -  . . 
You, J.-F.; Holm, R. H. Inorg. Chem. 1991, 30, 1431. 
Yu, S.-B.; Papaefthymiou, G. C.; Holm, R. H. Inorg. Chem. 1991, 30, 
3476 and references therein. 
You. J.-F.: paoaefthvmiou. G .  C.: Holm. R. H. J .  Am. Chem. soc. 

Figure 1. Structurally established M,Q,L, clusters 1-11 with nuclearity 
m ranging from 2 to 8. All structures are built up entirely of M2Q2 
rhombs except 8; are given in Table I' 

iwi, iis,'269;7. * 
Kanatzidis, M. G.; Coucouvanis, D.; Simopoulos, A,; Kostikas, A,; 
Papaefthymiou, V. J .  Am. Chem. Soc. 1985, 107, 4925. 
(a) Dupre, N.; Auric, P.; Hendriks, H. M. J.; Jordanov, J. Inorg. Chem. 
198625, 1391. '(b) Jordanov, J.; Gaillard, J.; Prudon, M. K.; van der 
Linden, J. G. M. Inorg. Chem. 1987, 26, 2202. (c) Ogino, H.; Tobita, 
H.; Yanagisawa, K.; Shimoi, M.; Kabuto, C. J .  Am. Chem. SOC. 1987, 
109, 5847 and references therein. 

metal-metal bonding. Consequently, iron atoms are not included 
in coordination numbers. 

The structural diversity of the FemQn cluster group is apparent 
from depictions of all structurally characterized members 1-14 

I.1-9J1-13J6-25 These species are presented in terms of the gen- 
in Figures 1 and 2. Specific examples are provided in Table 
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1 4  

M2&8 [36,0,21 
Figure 2. Structurally established M,Q,L, cyclic clusters ( I  = 0) with 
nuclearities 18 (12, 13) and 20 (14). 

eralized formula M,,,Q,,L/ inasmuch as the considerations that 
follow are not necessarily limited to these specific compounds. 
Note that two topological isomers of the formula [Fe&L6]' have 
been prepared (although not in the same core oxidation state), 
the p r i ~ m a n e ~ ~  (6) and basket' (7) clusters. Further, 
[Na2Fe18S30]8- has recently been demonstrated to occur as (at 
least) two isomers: the a-form (13) with 22 Fe2S2 rhombs and 
the bridging pattern 20p2-S + 8~3-S + 2p4-S8 and the @-form (12) 
with 24 rhombs and the pattern 18p2-S + 12p3-S.13 The uni- 
queness of the bridging mode combination of initially characterized 

called for further examination of the reaction 
system affording this isomer and led to the discovery of a second 
isomer. The wide range of core structures and the occurrence 
of structural isomers raise the unsolved problem of enumeration 
of all possible structures for a given formula, M,,,Q,,LLI. Structural 
features i-v reduce to a manageably narrow range the possible 
connectivity patterns of m metal sites bridged by n ligand atoms 
if the nuclearity m is not too large. 

We introduce here a matrix method for enumerating all possible 
isomers of the clusters M,,,Q,,L, under the conditions specified 
below. While our principal interest in species of this sort lies in 
the FemQn cluster field, and examples from that field will be 
frequently employed, the topological principles involved in the 
method can be easily generalized to many other systems. The 
method generates skeletal connectivity patterns. It is not concerned 
with the correlation of structure with skeletal electron counts; 
consequently metal oxidation states and cluster charge need not 
be considered. 

(16) Al-Ahmad, S. A,; Kampf, J. W.; Dunham, R. W.; Coucouvanis, D. 
Inorg. Chem. 1991, 30, 1164. 

(17) Robbins, A. H.; Stout, C. D. Proc. Natl. Acad. Sci. U.S.A. 1989, 86, 
3639; Proteins 1989, 5, 289. 

(18) Stout, C. D. J .  Mol. Biol. 1989, 205, 545. 
(19) (a) Kissinger, C. R.; Adman, E. T.; Sieker, L. C.; Jensen, L. H. J .  Am. 

Chem. Soc. 1980, 110, 8721. (b) Kissinger, C. R.; Sieker, L. C.; 
Adman, E. T.; Jensen, L. H. J .  Mol. Biol. 1991, 219, 693. 

(20) (a) Chu, C. T.-W.; Dahl, L. F. Inorg. Chem. 1977, 16, 3245. (b) 
Glidewell, C.; Lambert, R. J.; Harman, M. E.; Hursthouse, M. B. J .  
Chem. Soc., Dalton Trans. 1990, 2685. 

(21) O'Sullivan, T.; Millar, M. M. J .  Am. Chem. SOC. 1985, 107, 4096. 
(22) (a) Simon, W.; Wilk, A.; Krebs, B.; Henkel, G. Angew. Chem., Int. Ed. 

Engl. 1986,26, 1009. (b) Barbaro, P.; Bencini, A.; Bertini, I.; Briganti, 
F.; Midollini, S. J.  Am. Chem. SOC. 1990, 112, 7238. 

(23) (a) Kanatzidis, M. G.; Hagen, W. R.; Dunham, W. R.; Lester, R. K.; 
Couwuvanis, D. J .  Am. Chem. SOC. 1985, 107, 953. (b) Kanatzidis, 
M.; Salifoglou, A.; Couwuvanis, D. Inorg. Chem. 1986, 25, 2460. 

(24) Strasdeit, H.; Krebs, B.; Henkel, G. Inorg. Chem. 1984, 23, 1816; Z .  
Naturforsch. 1987, 42b, 565. 

(25) (a) Pohl, S.; Saak, W. Angew. Chem., Inr. Ed. Engl. 1984,23,907. (b) 
Saak, W.; Pohl, S. Angew. Chem., Int. Ed. Engl. 1991, 30, 881. 

Topological Metbod 
Defdtions and Bridging Modality. Consider the clusters 

M,Q,,L/ in which metal atoms M are four-coordinate, M-M 
bonding is weak, bridging atoms Q have the k, bridging modes 
u = 2-4, n, is the number of Q atoms with the mode pa, and L 
is a monodentate terminal ligand. Further, n, is the number of 
Fe2Q2 rhombs, [nZ,n3,n4] is the bridging moduliry of the structure, 
and Q-Q bonds are absent. For clusters that are not supported 
by strong metal-metal bonding, molecular topological closure 
requires that all bonds originating a t  the M atom terminate at  
either a bridging or terminal ligand atom. Thus, all possible 
connectivity patterns must meet the requirements of eqs 1 and 
2 .  With the requirement that n, values are integers, these 

1 + 2n2 + 3n3 + 4n4 = 4m (1) 

n, + n, + n4 = n ( 2 )  

equations provide a limited number of solutions and define the 
bridging modalities for a given formula.26 Note that the parity 
(evenness, oddness) of n, values is implied when rearranged forms 
of eqs 1 and 2 are examined: n3 + 1 = 2(2m - n - n4) and n4 - 
nz = 2(2m - n )  - ( n  + I), respectively. The first implies that n3 
and 1 should have the same parity; the second implies that nz and 
n4 should have the same parity when n + 1 is even and opposite 
parity when n + 1 is odd. Collected in Table I are solutions of 
these equations as applied to selected formulas that correspond 
to FemQn clusters of known structure. 

For certain formulas, there is a unique bridging modality. Thus, 
it is [2n-2,0,0] for MnQ2wZL4 (1-3), [3,1,0] for the site-voided 

(11). However, multiple solutions of eqs 1 and 2 are nearly always 
encountered and therefore indicate the possibility of structural 
isomers. In the case of M6Q6L6, for instance, there are four 
bridging modalities. As already noted, two of these [0,6,0] and 
[ 1,4,1], have been realized in the form of prismane (7) and basket 
(8) clusters, respectively. These species have isomeric Fe6s6 cores. 
Clusters with the [2,2,2] and [3,0,3] modalities are unknown. 

The number of bridging modalities is not necessarily equal to 
the number of isomers inasmuch as a given modality in general 
corresponds to more than one structure. Up to this point, the only 
constraints on structures are those of eqs 1 and 2.  However, 
because the bond connectivity patterns that represent these 
structures frequently do not correspond to either structural pre- 
cedent or stereochemical rationality at  M sites or for the overall 
structure, we adopt from structural features i-v certain constraints 
on probable structures: (A) rhomb-only structures, (B) uniter- 
minal ligation, and (C) rational stereochemistry. In the consid- 
erations that follow, some or all of these constraints may be applied 
to the cases examined. 

Rhomb-Ody Structures and the Number of M2Q2 Rbombs. The 
only exceptions to rhomb-only structures in Figure 1 are 8 and 
13, which contain two fused and two separate M3Q3 rings, re- 
spectively. Numerous other plausible structures can be anticipated 
from different rhomb-shared configurations.8 It is, therefore, 
instructive as part of the topological structure description to de- 
termine the number of rhombs present in rhomb-only structures. 
This can be accomplished by analyzing the possible connectivity 
properties of Q atoms in a given bridging mode. 

There is only one connectivity pattern for a Q,, atom; each such 
atom contributes to a half-rhomb in IS. For a Q,, atom two 
connectivities, 16 and 17, have been observed. The former occurs 
in the prismanes 7 and the latter in the cubanes 6 and other 
clusters. In 16 the Q,, atom contributes to two half-rhombs and 
in 17 to three half-rhombs. For a Q, atom the two connectivities 

cubane M3Q4L3 (4), and [0,0,6] for stellated octahedral M&& 

(26) These equations were solved using a computer program that searched 
through all possible combinations of allowed no values. As long 8s M-M 
bonds are not counted in the four bonds at each,M atom, the equations 
are valid for clusters with such bonds. Similarly, they apply to clusters 
with nonmonodentate ligands so long as I implies the number of mon- 
odentate ligand equivalents (e.g., 2 for a bidentate chelate) at a four- 
coordinate M atom. 
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15 16 17 

18 19 

18 and 19 have been established, in clusters 14 and 9, respectively. 
This atom contributes to three half-rhombs in 18 and four 
half-rhombs in 19. For a given structure, the total number of 
M2Q2 rhombs follows from the contributions of all Q atoms to 
rhombsharing. Thus, for a given bridging modality, the possible 
number of rhombs n, will fall in a range whose minimum value 
is set by all Q,,, and Q, atoms assuming connectivities with the 
least contributions, and whose maximum value arises from the 
inverse situation. The result is expressed by eq 3, where the 
truncation function Int and the additive term 0.5 are entered to 
ensure integer results in consideration of the fact that a rhomb-only 
structure must contain an integral number of rhombs.27 

Int(0.5n2 + n3 + 1.5n4 + 0.5) I n, I 
Int(0.5n2 + 1.5n3 + 2n4) (3) 

When the inequality is applied to the formulas in Table I, the 
observed value n,(obs) for known structures is the calculated value 
or is included in the range of calculated values. Bridge modalities 
and rhomb numbers for other cluster formulas are presented in 
Tables I1 and 111; rhomb numbers do not necessarily imply ste- 
reochemically rational structures. With eqs 1-3, a rhomb-only 
structure for a given formula is uniquely determined in favorable 
cases. For example, the unique bridging modality [2n-2,0,0] and 
value n, = n - 1 require the M-vertex-shared linear structures 1-3, 
... for M,Q,,L,, (n = 2 4 ,  ...). For other cases, a comprehensive 
method is required to derive all possible structures. 

Coonectivity Matrices and Tbeir Topological Validity Cdtiom. 
Each unique structure has an associated topological bond con- 
nectivity pattern. A structure is described by a connectivity matrix 
C of dimension m X (n + I)  with its elements C, = 1 when Mi 
is bonded to Qj or Lj, and zero otherwise. For example, the 
connectivity matrix in (4) for M6Q9L2 with bridging modality 
[6,2,1] is readily formulated. The concept of a connectivity matrix 
is parallel to that of an adjacency matrix in graph theoryZ8 except 
that C is a block submatrix of the latter and therefore is generally 
not square. Topological closure imposes the conditions of eq 5 ,  

(27) The Q atom connectivity patterns considered here are limited to those 
that actually occur in FemQn clusters, and do not include all possible 
situations. For example, the pattern 20 is conceivable; while unknown 

20 

in chalcogenide clusters, it is of some occurrence in bridged halide 
compounds (Q = halide). Further, when Q,, is part of two rhombs with 
Q,, and/or Q, atoms, a feasible but unknown structural situation, q 
3 may not predict the entire range of rhomb numbers. Examples include 
23-25 in Figure 3 which have 6 rhombs vs n, = 4 and 5 from eq 3. This 
equation can be recast to include structurally unproven bridging situa- 
tions such as these. but the range of n, expands and becomes less useful. 

(28) (a) RandiC, M. J .  Phys. Chem. 1974,60, 3920. (b) Mackay, A. L. J .  
Phys. Chem. 1975,62, 308. 

Table II. Possible Bridging Modalities and Numbers of M2Q2 
Rhombs in the Clusters M ~ Q + ~ L c ~ o  

formulau rn7.n,.nAl. n> 

Formula M6Q,L, is equivalent to M'MSQnL1+2 when one four-co- 
ordinate M is replaced by six-coordinate M'. bNote the restrictions in 
ref 27 on the calculated values of n,. C N o  possible rhomb-only struc- 
ture. 

every M atom is four-coordinate, and of eq 6, every Q atom forms 
a number of M-Q bonds equal to its bridging multiplicity. 

M i M i M s h M s M s  Iym 

9 

sum 

0 1 0 1 0 0  

: ; : : ; : I }+ * (4) 
0 0 1 0 0 1  
o o o i o i J  __.__.______--.- 
0 0 0 0 1 0  0 0 0 0 0 1 / 1 '  - 

t 
4 

( 5 )  CCij = 4 i = 1 ,  2, ..., m 
I' I 

m 

i= I 
ECij = a (6) 

j = l , 2  ,..., n , n + l ,  ..., n + I ;  
a = 2-4 for Q,. and 1 for L 

Derivation of a complete set of valid connectivity matrices will 
exhaust all possible structures for a given bridging modality of 
a particular formula. However, permutated matrices that cor- 
respond to a given structure but differ in the atom numbering 
scheme must be eliminated in order to obtain a nonredundant set 
of structures. For example, exchanges of sequence numbers for 
atoms MI and M2, or Q, and Q2, or a combination of these 
operations will result in three matrices different from the original, 
but representing an identical structure. These matters are con- 
sidered next. 
Reduced Connectivity Matrix. In formulating C matrices, Q 

atoms are arranged, and atom numbers increase, in descending 
rows in the order w4, b3, p2, and pl(L), as in matrix 4. Permutation 
of Q atoms can only be performed within the same class of Q's, 
viz., those with a given multiplicity. If a C matrix is divided into 
submatrices according the w,, values and the elements C, of each 
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Table 111. Possible Bridging Modalities and Numbers of M,Q, Rhombs in the Clusters M,-9Q1-,nLd..7 
formula’ [n2,n3m41, nrb 
M7Q&4 
M7QJ-s 
M7Q8L6 
M7Q&7 
M7Q9I-4 
M7Q9L5 

[0,8,0], 8-12; [1,6,1]; 8-11; [2,4,2], 8-11; [3,2,3], 8-10; [4,0,4], 8-10 
[1,7,0], 8-11; [2,5,1]; 8-10; [3,3,2], 8-10; [4,1,3], 8, 9 
[2,6,0], 7-10; [3,4,1]; 7-9; [4,2,2], 7-9; [5,0,3], 7, 8 
[3,5,0], 7-9; [4,3,1]; 7, 8; [5,1,2], 7, 8 
[3,6,0], 8-10; [4,4,1]; 8-10; [5,2,2], 8, 9; [6,0,3], 8, 9 
[4,5,0], 7-9; [5,3,1]; 7-9; [6,1,2], 7, 8 

M7Q9L6 
M7Q9L7 
M7QIOL4 
M7QIOL5 
M7Q10L6 
M7QIOL7 [9,1,01, 6 
MsQJ-4 
MBQJ-5 
MBQBL~ 
M.3QJ-7 
M8Q9L4 
MsQ9I-5 
M8Q9L6 
MnQ9L7 
M8Q10L4 
M8QIOL5 
MBQIOL6 
MBQIOL7 
M9QJ-4 [0,0,8], 12-16 
M9QJ-5 [0,1,7], 12-15 
M9Q8L6 [0,2,6], 11-15; [1,0,7], 11-14 
M9QJ-7 [0,3,5], 11-14; [1,1,6], 11-14 
M9Q9L4 
M9Q9L5 
M9Q9L6 

M9Q10L4 
M9QioLs 

M9QIOL7 

[5,4,01, 7, 8; [6,2,11; 7, 8; [7,0,21, 7 
[6,3,01, 6, 7; [7,1,1l; 6, 7 
[6,4,01, 7-9; [7,2,11; 7, 8; [8,0,21, 7, 8 
[7,3,01, 7, 8; [8,1,11, 7 
[8,2,01, 6, 7; [9,0,11, 6 

[0,4,4], 10-14; [1,2,5], 10-13; [2,0,6], 10-13 
[0,5,3], 10-13; [1,3,4], 10-13; [2,1,5], 10-12 
[0,6,2], 9-13; [1,4,3], 9-12; [2,2,4], 9-12; [3,0,5], 9-11 
[0,7,1], 9-12; [1,5,2], 9-12; [2,3,3], 9-11; [3,1,4], 9-11 
[0,8,1], 10-14; [1,6,2], 10-13; [2,4,3], 10-13; [3,2,4], 10-12; [4,0,5], 10-12 
[0,9,0], 9-13; [1,7,1], 9-13; [2,5,2], 9-12; [3,3,3], 9-12; [4,1,4], 9-11 
[1,8,0], 9-12; [2,6,1], 9-12; [3,4,2], 9-11; [4,2,3], 9-11; [5,0,4], 9, 10 
[2,7,0], 8-11; [3,5,1], 8-11; [4,3,2], 8-10; [5,1,3], 8-10 
[2,8,0], 9-13; [3,6,1], 9-12; [4,4,2], 9-12; [5,2,3], 9-11; [6,0,4], 9-11 
[3,7,0], 9-12; [4,5,1], 9-11; [5,3,2], 9-11; [6,1,3], 9-10 
[4,6,0], 8-11; [5,4,1], 8-10; [6,2,2], 8-10; [7,0,3], 8, 9 
[5,5,01, 8-10; [6,3,11, 8, 9; [7,1,2l, 8, 9 

[0,4,5], 12-16; [1,2,6], 12-15; [2,0,7], 12-15 
[0,5,4], 11-15; [1,3,5], 11-15; [2,1,6], 11-14 
[0,6,3], 11-15; [1,4,4], 11-14; [2,2,5], 11-14; [3,0,6], 11-13 

[0,8,2], 10-16; [1,6,3], 11-15; [2,4,4], 11-15; [3,2,5], 11-14; [4,0,6], 11-14 
[0,9,1], 11-15; [1,7,2], 11-15; [2,5,3], 11-14; [3,3,4], 11-14; [4,1,5], 11-13 

[1,9,0], 11-14; [2,7,1], 10-13; [3,5,2], 10-13; [4,3,3], 10-12; [5,1,4], 10-12 

M9Q9L7 

M9Q10L6 

[0,7,2], 10-14; [1,5,3], 10-14; [2,3,4], 10-13; [3,1,5], 10-13 

[0,10,0], 10-15; [1,8,1], 10-14; [2,6,2], 10-14; [3,4,3], 10-13; [4,2,4], 10-13; [5,0,5], 10-12 

“Formula M6QnLI is equivalent to M’MSQnL1+2 when one four-coordinate M is replaced by six-coordinate M’. bNote the restrictions in ref 27 on 
the calculated values of ni. 

submatrix are summed along each column, a quantity independent 
of the permutation of Q and L atoms is obtained. This quantity 
R, the reduced connectivity matrix, is defined by eq 7, where the 

(7) 

subscript 5 - a denotes that the first row of R is for Qp,, etc., and 
the summation is over each class of Q or over L. For [6,2,1]- 
MsQ9Lz, the R matrix (8) expresses the number of Q,. and L 
atoms bound to MI+. 

/ 1  1 1  1 0  o \  
1 1 1 1 1 1  
2 2 2 2 2 2  
0 0 0 0 1 1  

With recognition of the concept of a reduced connectivity 
matrix, the task of deriving connectivity matrices C for all possible 
configurations is reduced to two steps: obtain all possible R 
matrices for a particular bridging modality and expand R matrices 
into C matrices. 

The introduction of R matrices eliminates all possible permu- 
tations along the Q/L rows. We next eliminate column-permuted 
R matrices by setting a descending order rule following the idea 
of Randic’s method.28 If we read down each column of R as a 
four-digit number and term that number ei, a valid R matrix must 
conform to eq 9. Any matrix violating this condition will be 

e ,  L e2 1 ... 2 e,  (9) 

transformable by permutation of columns into a unique matrix 
satisfying eq 9. To derive all possible valid R matrices, it is 
necessary to specify validity or boundary conditions, restricting 
R’s for a given bridging modality. A valid R matrix meets the 

conditions of eqs 10 and 11, which specify the sum of each column 
and row, respectively. The possible minimum and maximum (the 
lesser of 4 or npo) of any element is 0 I Ri,5w I min(4,na). A 
matrix B is introduced to represent the boundary conditions; such 
a matrix (eq 12) defines a complete set of R matrices for a given 
bridging modality. 

1 

a=4 
CRi,S-,, = 4 i = 1, 2 ,  ..., m (10) 

(11) 
m 

i= I 
zRi,5-a = an, a = 1-4 

min(4,n4), 4 x n4 

min(4,nz), 2 x n2 
min(4,1), 1 

(1 2) 

With the permutation problem solved and the validity conditions 
for R matrices specified, a procedure can be established to obtain 
all possible valid R’s for a given bridging modality of a particular 
formula. It starts with the first row for Q,, and then subsequent 
rows for Q,,, Qp2, and L and derives all possible patterns of four 
rows that meet the descending order rule and the boundary 
conditions. A detailed description of the procedure is given in 
the Appendix. Here we provide a brief illustration in Scheme I 
using one of the three bridging modalities, [ 1,2,1], of M4Q4L4. 
In this case, five valid R matrices are found. We note that one 
necessary condition for a structure to be constructed entirely of 
M2Q2 rhombs (rhomb-only structure) is that the element Ri4 I 
2 ( i  = 1, 2, ..., m); Le., no M site may have more than two terminal 
ligands. The requirement for one such ligand is Ri4 5 1. Matrix 
R, contains the element R44 = 3, meaning that it corresponds to 
a structure not completely built of rhombs, and so it is considered 
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1 1 1 0  
1 1 1 0  
1 0 0 1  
0 1 0 0  
0 0 1 0  
0 0 0 1  
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1 1 1 1  1 1 1 1  
1 1 1 0  1 1 1 0  
1 1 0 1  1 1 0 1  
1 1 0 0  1 0 1 0  
0 0 1 0  0 1 0 0  
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1 1 1 0  
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1 0 0 0  
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c4 
29 

P I  sQ1 SM* s4* 

less likely to correspond to a real structure than the other four. 
These rhombonly structures are illustrated in Figure 3 as 26-29, 
together with rhomb-only structures 6 and 21-25 for the two other 
bridging modalities of M4Q4L4. Note that two of the structures 
(27,29) can be immediately identified from the fourth (n,)  row 
of the R matrices. 

With a complete set of R matrices and the two conditions on 
Ri4, it is not unusual that a few definite structures, and even a 
unique structure, can be determined by the procedures up to this 
point. For example, M8Q& has only one bridging modality, for 
which there is only one valid R matrix, (13), under constraint B. 

3 3 3 3 3 3 3 3  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  

Consequently, each M atom must be bound to three QM atoms 
and one terminal ligand. It is not difficult to recognize that the 
stellated octahedron 11 is the only possible structure that meets 
the connectivity requirement and is stereochemically rational. 

For clarity in the exposition of the topological method, C 
matrices were introduced first and then compressed to R matrices, 
which follow from the boundary condition matrix B. However, 
in applications of the method the process is reversed, as in Scheme 
I. The B matrix is readily written down from the bridging mo- 
dality, and the R matrices developed thereafter. In expanding 
the latter to C matrices, which in the general case are required 
for structure recognition because they convey atom connectivities, 
the permutation problem arises again. The method for expansion 
of R to C matrices is described in the Appendix. 

Criterion for Rhomb-Only Structures. Consider two square 
matrices, SM with dimensions m X m and SQ with dimensions n 
X n, termed sharing matrices for M and Q atoms, respectively. 
These are defined as the left and right product of the M-Q part 
of a C matrix and its transpose, eqs 14 and 15, respectively. These 

) (13) ( 1 1 1 1 1 1 1 1  

n 

& = I  
SMij = C&j& i, j = 1, 2, ..., m (14) 

m 

k - I  
SQij = cck& i, j = 1, 2, ..., n (15) 

matrices are diagonally symmetric; the structural meaning of SM 
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Figure 3. The rhomb-only structures 6 and 21-29 for the three bridging 
modalities of M4Q4L4; only structures 6 and 25 have been prepared. 

is the number of Q atoms shared by Mi and Mj, and of SQ the 
number of M atoms shared by Qi and Qp The necessary and 
sufficient condition for a rhomb-only structure is that the SM and 
SQ matrices corresponding to a given C matrix must contain one 
nondiagonal element no less than 2 in every column or row. In 
other words, every M atom must share no less than two Q atoms 
with another M atom, and conversely. In Scheme I, SM and SQ 
matrices for the two connectivity matrices corresponding to 
structures 26 and 27 are provided as examples. 

The topological method is capable of specifying bridge mo- 
dalities and, in principle, all possible structures for M,Q,LI under 
the constraints of eqs 1 and 2 and conditions for valid COMeCtivity 
matrices. The number of such structures becomes enormously 
large as m increases, and the method becomes impractical, par- 
ticularly if all connectivity patterns are required. However, under 
the constraints A-C, the number of possible structures reduces 
to a manageable number for at least some formulas of current 
interest. In the following section, the procedure is used to examine 
the structural chemistry of known and unknown Fe,Q, and related 
clusters. 

Applications 

Selected cases are considered with the aid of Tables 1-111, which 
contain bridging modalities and rhomb numbers?' Figures 1 and 
2, which summarize known structures, and Figures 3-6, which 
depict structures deduced from the topological method. In view 
of our interest in FemQn clusters, the majority of cases involve 
tetrahedral M sites. The structures considered for each case are 
constrained to the rhomb-only type unless noted otherwise. Many 
of these could not be constructed with one or more planar M sites. 
As will be seen, the experimental structure is without exception 
included in the possible set of structures generated by the method. 

1. MnQ&2L4. For a given n value, the bridging modality 
[2n-2,0,0] and rhomb number n, = n - 1 are unique and uni- 
terminal ligation is not possible. Structures are formed by M- 
vertex sharing; homo- and/or heteronuclear clusters with n = 2-6 
have been prepared. All known compounds with this general 
formula are rhomb-only and manifest these structural features. 



5 33 6 25  

[O ,3 ,OI 11 ,I1 [0,4,01 [2,0,21 [1 A11 

M4Q3L7 M 4 Q 4 4  

Figure 4. All possible rational rhomb-only structures for MSQ8L4 (30), M6QI0L4 (31), MnQzn (32), M4Q3L7 (5, 33), and M4Q4L4 (6, 25); bridging 
modalities are indicated. 

The most widely observed examples are those with n = 2 (1) such 
as [Fe2Q2L4]2-'J2 and [SzMS2FeLz]2- (M = Mo, W),29 in which 
both metal centers are tetrahedral. The structures of numerous 
examples of linear clusters with nuclearities n 1 2 have been 
s ~ m m a r i z e d ; ~ ~ . ~ ~  some of these are presented below. 

a. M a & ,  (2). Over 50 structural examples of linear trinuclear 
clusters have been reported. Examples include [ Fe3Q4L4] 3- ,3912 

[C12FeSzVSzFeC12]3-,32 [S2MSzFeSzMSz]3-,33 and 
C12HgC1zMC12HgC1z in which the M = Pd and Pt sites are 
planar.34 Bridging atoms in any structure may also be part of 
a chelate ring, as found in this group for [Ni3(SR)#- complexes 
with Ni-vertex-shaped rhombs and planar ~oordinat ion.~~ 

b. M4QA4 (3). Linear tetranuclear clusters of this formula 
include [Fe4S6(SR),]' l6 and [Fe&(WS4)z]e,36 with tetrahedral 
metal sites, and planar [CU~X,,]~-  (X = C1-, Br-).37 
c M&L, (30). The linear four-rhomb structure is uncommon, 

one of the few examples being planar C U ~ C ~ , ~ ( P ~ O H ) ~ . ~ ~  
d iI&QIJ.,, (31). The linear five-rhomb structure is rare. The 

ion [Ge6Se14]'*, which has been isolated as its Cs+ salt from a 

(29) (a) Muller, A.; TMe, H.-G.; Bogge, H. Z .  Anorg. Allg. Chem. 1980, 
471, 115. (b) Coucouvanis, D.; Stremple, P.; Simhon, E. D.; Swenson, 
D.; Baenziger, N. C.; Draganjac, M.; Chan, L. T.; Simopoulos, A.; 
Papaethymiou, V.; Kostikas, A.; Petrouleas, V. Inorg. Chem. 1983, 22, 
293. 

(30) Holm, R. H.; Simhon, E. D. In Molybdenum Enzymes; Spiro, T. G.. 
Ed.; Wiley-Interscience: New York, 1985; Chapter 2. 

(31) Muller, A.; Bogge, H.; Schimanski, U.; Penk, M.; Nieradzik, K.; 
Dartmann, M.; Krickemeyer, E.; Schimanski. J.; Ramer, C.; Romer, R.; 
Dornfeld, H.; WienMker, U.; Hellmann, W.; Zimmermann, M. Mon- 
arsh. Chem. 1989, 120, 367. 

(32) Do, Y.; Simhon, E. D.; Holm, R. H. Inorg. Chem. 1985, 24, 4635. 
(33) (a) Coucouvanis, D.; Simhon, E. D.; Baenziger, N. C. J. Am. Chem. 

Soc. 1980,102,6644. (b) McDonald, J. W.; Friesen, G. D.; Newton, 
W. E.; Muller, A.; Hellmann, W.; Schimanski, U.; Trautwein, A.; 
Bender, U. Inorg. Chim. Acra 1983, 76, L297. 

(34) Barr, R. M.; Goldstein, M.; Hairs, T. N. D.; McPartlin, M.; Markwell, 
A. J. J. Chem. Soc., Chem. Commun. 1974, 221. 

(35) Tremel, W.; Kriege, M.; Krebs, B.; Henkel, G. Inorg. Chem. 1988,27, 

(36) Muller, A.; Hellmann, W.; Romer, C.; Romer, M.; Ngge, H.; Jostes, 
R.; Schimanski, U. Inorg. Chim. Acra 1984,83, L75. 

(37) (a) Halvormn, K. E.; Grigereit, T.; Willett, R. D. Inorg. Chem. 1987, 
26, 1716. (b) Geiser, U.; Willett, R. D.; Lindbeck, M.; Emerson, K. 
J. Am. Chem. Soc. 1986, 108, 1173. 

(38) Willett, R. D.; Rundle, R. E. J. Chem. Phys. 1964, 40, 838. 

3886. 

high-temperature reaction, possesses a linear arrangement of the 
six germanium atoms in a structure in which selenide atoms act 
as bridging and terminal ligands.39 The complex [Ni&C3H&]z- 
contains two terminal and five bridging propane- 1,3-dithiolate 
ligands.35 Because of nonzero dihedral angles between planar NiS, 
units, the nickel atoms are not linearly disposed but rather occur 
in a severely bent one-dimensional chain. 

2. M,Q, For these generalized species the bridging modality 
[2n,0,0] and n, = n are unique. Structures are necessarily 
rhomb-only and cyclic, as illustrated with 32 (Figure 4), and 
appear to be possible only with n 2 4. A set of Ni,(SR)2, species 
with n = 4-6 and 8 and planar rhombs is known.40 

3. M3Q& This formula corresponds to one bridging modality, 
[3,1,0], and one structure, the M-voided cuboidal entity 4. While 
this M3Q4 core structure is of considerable Occurrence in com- 
pounds of six-coordinate M(IV)$' it is known only in the form 
of [M3Q(SR)6]2- (M = Fe, CO),~ and the protein-bound clusters 
Fe3S4(S(Cys))3 for four-coordinate metal atoms. 

4. M,Q& Only two bridging modalities are possible, [0,3,0] 
and [ l , l , l ] .  The former is compatible only with the Q-voided 
cuboidal structure 5, which is found with [Fe4S3(NO),]- and 
Fe4S3(N0)4(PPh3)3.43 The latter modality uniquely corresponds 
to structure 33 (Figure 4), which has not been synthesized. 

5. M,Q&,. Collected in Figure 3 are the 10 possible structures 
for the three bridging modalities. Among them, only 6 and 25 
meet the condition that all M atom sites in a given structure have 
a rational stereochemistry.u The cubane structure 6 has been 

(39) Deiseroth, H.-J.; Han, F.4. Angew. Chem., Inr. Ed. Engl. 1981,20,962. 
(40) n = 4: (a) Gaete, W.; Ros, J.; Solans, X.; Font-Altaba, M.; Brian6 

J. L. Inorg. Chem. 1984,23,39. n = 4 and 5: (b) Kriege, M.; Henkel, 
G. Z .  Narurforsch. 1987,426, 1121. n = 6: (c) Woodward, P.; Dahl, 
L. F.; Abel, E. W.; Crosse, B. C. J.  Am. Chem. Soc. 1965,87, 5251. 
(d) Gould, R. 0.; Harding, M. M. J.  Chem. Soc. A 1970, 875. (e) 
Miyamae, H.; Yamamura, T. Acra Crysfallogr. 1988, C44.406. n = 
8: (f) Dance, 1. G.; Scudder, M. L.; Secomb, R. Inorg. Chem. 1985, 
24, 1201. 

(41) Common examples include the aquo ions [M3S,(OH2)9J4+. (a) M = 
Mo: Akashi, H.; Shibahara, T.; Kuroya, H. Polyhedron 1990,9, 1671. 
(b) M = W: Shibahara, T.; Takeuchi, A.; Ohtsuji, A,; Kohda, K.; 
Kuroya, H. Inorg. Chim. Acra 1987, 127, L45. 

(42) Krebs, B.; Henkel, G. Angew. Chem., Inr. Ed. Engl. 1991,30,769 and 
references therein. 

(43) Nelson, L. L. Ph.D. Thesis, University of Wisconsin, Madison, WI, 
1981. 
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Figure 5. All possible rational structures with uniterminal ligation for 
the four bridging modalities of M6Q6L6. The set includes rhomb-only 
(34-48) and non-rhomb-only (8, 49) structures; only the prismane 
structure 7 and the basket structure 8 have been prepared. 

established in over 100 cases, ranging from the homonuclear 
chalcogenide-bridged examples in Table I to such compounds as 
halide-bridged M4Br4(PEt3)4 (M = Cu, Ag),45 methoxide-bridged 

(44) This term implies a close approach to or achievement of planar or 
tetrahedral stereochemistry. In the representations of the connectivity 
matrices for this (Figure 3) and other formulas, careful attempts have 
been made to provide the stereochemically most reasonable renditions 
of the structures. While these renderings have a subjective component, 
they cannot disguise the most improbable M atom stereochemistries, 
such as the pyramidal-type MQ, fragments present in 23 and 27, among 
others. 

(45) (a) M = Cu: Goel, R. G.; Beauchamp, A. L. Inorg. Chem. 1983, 22, 
395. (b) M = Ag: Teo, B. K.; Calabrese, J. C. J .  Chem. SOC., Chem. 
Commun. 1976, 185. 
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10 51 52 

53 54 
[1,1,41 

M7Q6L7 
Figure 6. A rational rhomb-only structure for [6,2,0]-M&& (50) and 
all possible rational rhomb-only structures with uniterminal ligation for 
the two bridging modalities of M6Q6L7 (10, 51-54). Trigonal cluster 50 
and the monocapped prismane 10 have been prepared. 

Zn4(0Me)4Me4,46 and heteronuclear M C U ~ S ~ C I ( P P ~ ~ ) ~ . ~ '  The 
bicapped planar structure 25 of idealized D2h symmetry has thus 
far been demonstrated only for Ag4Br4(MeN(PPhz)2)2,48 which 
contains distorted tetrahedral Ag(1). There is a proven isomer 
of the ubiquitous cubane core, viz., "stepped" M4(Q,,JZ(Q,, )2  as 
found in compounds such as CuJ4(PPhJ4 (X = Br-, I-)." heae 
compounds contain tetrahedral and trigonal-planar Cu(1) and thus 
do not conform to eq 1. One of the forms of [2,2,0]-M4Q4L6 
contains the isomeric stepped core and is stereochemically rational 
but has not been prepared. 

6. M&&. Four bridging modalities are possible, from which 
the 16 rhomb-only structures 7 and 34-48 in Figure 5 can be 
derived with the imposition of constraints B and C, the latter with 
tetrahedral M site stereochemistry. For [0,6,0], two isomers are 
possible. The prismane structure 7 of D3h symmetry has been 
stabilized in [Fe6S6L6]2-*3- and in M4(WS3Q)z(PPh3)4 (M = Cu, 
Ag; Q = 0, S).% Structure 34 has not been detected. For [1,4,1], 
there are four structures, 3538, none of which has been found. 
There are five isomers, 39-48, of the [3,0,3] modality, all ex- 
perimentally unknown. If the rhomb-only condition is relaxed, 
the basket structure 8 in [1,4,1] and the isomer 49 in [2,2,2] 
emerge. These fail the rhomb-only condition because of one Q,, 
atom not incorporated into a rhomb. The compact basket structure 
of C, symmetry has been proven for the examples in Table I and 
for [Fe6SS(SPh)(PR3)4Lz]+.S' 

The set of structures in Figure 5 serves to demonstrate the 
considerable number of possibilities for a cluster formula of 

(46) Shearer, H. M. M.; Spencer, C. B. Chem. Commun. 1966, 194. 
(47) Muller, A,; Bbgge, H.; Schimanski, U. Inorg. Chim. Acra 1983, 69, 3. 
(48) Schubert, U.; Neugebauer, D.; Aly, A. A. M. Z. Anorg. Allg. Chem. 

1980,464, 217. 
(49) (a) Churchill, M. R.; Kalra, K. L. Inorg. Chem. 1974, 13, 1427. (b) 

Churchill, M. R.; DeBoer, B. G.; Donovan, D. J. Inorg. Chem. 1975, 
14,617. (c) Dyason, M. C.; Engelhardt, L. M.; Pakawatchai, C.; Healy, 
P. C.; White, A. H. Aust. J. Chem. 1985, 38, 1243. 

(50) (a) Muller, A.; Bogge, H.; KBniger-Ahlborn, E. J .  Chem. SOC., Chem. 
Commun. 1978, 739. (b) Mnller, A.; Mgge, H.; Wang, T. K. H. Inorg. 
Chim. Acra 1980, 39, 71. 

(51) Cai, J.-H.; Chen, C.-N.; Liu, Q.-T.; Zhuang, B.-T.; Kang, B.-S.; Lu, 
J.-X. Jiegou Huaxue 1989, 8, 220. 
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relatively low nuclearity even with all constraints, A X ,  imposed. 
The method generates the two known structures (when the 
rhomb-only constraint is omitted). These have the highest sym- 
metries among the possible isomers, the rest of which are of Ci, 
C,, or C1 symmetry. 

7. h16QBL6. There are two possible bridging modalities, [6,2,0] 
and [7,0,1]. One rhomb-only [6,2,0] structure is 50 in Figure 
6, and has been synthesized as [Fe3S2(WS4)3]e.s2 There are no 
known examples of the other modality. It might be noted that 
the clusters [M6S8(PR3),]', while of this formula type, contain 
five-coordinate M = Fe or Co sitess3 and thus do not conform to 
eq 1. 

8. Ma&.  Two bridging modalities are possible: [0,3,3] and 
[ 1,1,4]. While possible structures may be derived by the method 
of Scheme I, another procedure may also be utilized in which 
M7Q6L7 is treated as an adduct of M6Q6L6 and an M-L unit. 
Because any M6Q6L6 portion of a valid cluster must itself be an 
independently valid structure, one may consider the addition of 
an M-L unit to the structures in Figure 5 .  In this way, the five 
possible structures 10 and 51-54, shown in Figure 6, under 
constraints B and C were obtained. All except 10 lack symmetry 
and have not been observed. Fe7S6(PEt3)4C13 exhibits the mo- 
nocapped prismane structure of idealized C3, symmetry. 

9. MsQ&. As noted earlier, this formula has the unique 
bridging modality [0,0,6]. Similar to the preceding case, the 
structure corresponding to this modality can be derived by the 
addition of an M-L unit to the valid structures for M7Q6L8. Only 
one result compatible with the bridging modality is possible, the 
stellated octahedron 11. In addition to [FesS61s13-, the structure 
has been demonstrated for [Fe3NiSS618]"?s [Co8S6(SPh)8]k35,s4 
and Ni8(PPh)6(CO)8sS and related Ni clusters.s6 The latter 
illustrate cases with strong metal-metal bonding to which the 
method may be appliedOz6 

10. M,,Q&. No rational structure can be derived by the 
addition of an M-L unit to the stellated octahedron. This ex- 
emplifies the case of a formula for which no rational structure 
can be constructed; indeed, no bridging modalities are compatible 
with this formula. 

11. Cyclic Clusters. In contrast to the MnQzn case, for which 
structure 32 is unique, the other known cyclic clusters MlsQ30 
(12,13) and MzoQ38 (14) present a very large number of possible 
structures. The clusters isolated are specified in Table I. As 
discussed e l ~ e w h e r e , ~ . ~ ~  the sodium contents are undoubtedly in- 
dispensable to cluster stability. They are not included in the 
structural depictions in Figure 2 in order to emphasize the FeQ 
topology. The MI8QM case involves seven bridge modalities, each 
with many isomers. Similarly, the M20Q38 case has three mo- 
dalities, also with many possibilities. Development of the isomeric 
structures for these cases is a herculean task. The method is 
nonetheless quite useful in providing a structural circumscription 
of these complex cases in the form of allowed bridging modalities. 
The latter serve to emphasize a potentially enormous structural 
diversity in chalcogenometalates of these and other large nucle- 
arities. 

12. Iron-Sulfur Protein Clusters of Unknown Structure. Re- 
cently, several structurally uncharacterized protein-bound clusters 
have been detected. Firm analytical data for the iron and sulfur 
contents of these clusters are lacking. However, given the pre- 
cedents in this field,lJ7-19957 it is probable that the clusters have 
Fe,Q, cores, and we proceed on this basis. The cluster in a protein 
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from Desulfovibrio vulgaris (Hildenborough) has EPR charac- 
teristics similar to those of [Fe6S6L613- and is thought to have the 
prismane structure 7.s8 A similar cluster may occur in a protein 
recently isolated from Desulfovibrio desulfuricans together with 
another probable 6-Fe cluster with S = 9/2 .59  A cluster with this 
spin state has also been detected in the dissimilatory sulfite re- 
ductase from D. vulgaris ( Hildenborough).60 Also, 6-Fe clusters 
("H-clusters") have been suggested to be present in certain 
hydrogenases.61 While this is not a complete list of uncharac- 
terized Fe-S protein clusters, it is sufficient to indicate that these 
putative 6-Fe clusters, if not of the prismane type, pose structural 
questions that could be pursued with the topological method. 
Bridging modalities and rhomb numbers for selected clusters in 
the composition range M6QS-8L4-10 are set out in Table 11. 

Other uncharacterized biological Fe-S clusters include the 
FeMo and FeV cofactors of nitrogenase.62 The more thoroughly 
investigated FeMo cofactor has the apparent composition range 
MoFe6sS8-loLI. On the basis of extended X-ray absorption fine 
structure (EXAFS) analyses of the cofactors6z and structures of 
the heterometal cubane-type MoFe3S4 and VFe3S4 c l u s t e r ~ , 3 ~ , ~ ~ * ~  
the molybdenum and vanadium sites are six-coordinate. The 
overall structures of the cofactors are unknown and represent a 
major problem in advancing the understanding of the enzymes. 
Bridging modalities and rhomb numbers are listed in Table I11 
for selected clusters in the compositional range M7-9Q8-10L4-7. 
While appropriate to homonuclear clusters of these nuclearities, 
the information also applies to clusters containing one six-coor- 
dinate heterometal (M') site because of the relationship M,Q,L, 

M'Mm-1QnLI+2. A similar relationship applies to the data in 
Table 11. The information in these tables provides a starting point 
for the development of feasible structures under the constraints 
of the topological method. Numerous cofactor structures have 
been proposed.30*s4a~65~66 All are encompassed by the topological 
treatment with the allowance of five- or six-coordinate M' sites. 
For example, our early proposed model [MoFe7S6LIO]Z54a is 
rhomb-only [0,0,6]-M8Q6L8 = M'M7Q6LI0 with structure 11. 

Other Cluster Types. Equation 1 can be modified to eq 16 to 
describe clusters containing six-coordinate metal sites in the 
clusters M,Q,LI. For heterometal clusters with four-coordinate 
M sites, eq 1 applies without change. However, for the formula 
M',,,MmQ,,LI, eq 17 must be used. These equations in combination 
with eq 2 provide the algorithms for determination of the possible 
bridging modalities in these cluster types. 

(16) 

(17) 

Summary. The topological method introduced here is, to our 
knowledge, the first comprehensive treatment of cluster molecules 
M,Q,L, in which the intent is to rationalize existing structures, 
provide an organizational framework for all structures within its 
purview, and offer a basis for predicting potentially accessible new 
structures. The method imposes the conditions of four-coordinate 
M atoms and three bridging modes, Q,,. (a = 2-4), which with 
the algorithm of eqs 1 and 2 define the possible bridging modalities 
[n2,n3,n4]. These provide the organizational framework. For each 
modality, the boundary condition matrix B is obtained, reduced 
connectivity matrices R are constructed, and connectivity matrices 
C are generated by expansion of R matrices. The latter define 

1 + 2n2 + 3n3 + 4n4 = 6m 

1 + 2n2 + 3n3 + 4n4 = 6m'+ 4m 
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all possible structures. On the basis of the structural da t a  base 
represented by Figure 1, one or more of the additional constraints 
of rhomb-only structures, uniterminal ligation, and rational M 
site stereochemistry serve to identify further the more probable 
structures for a given formula. 

When implemented by further programming, the topological 
method will provide an even more powerful tool for identifying 
all possible rational structures for a given formula. At present, 
solutions to e q s  1 and 2 and derivation of B and R matrices have 
been programmed. Further elaboration would involve inclusion 
of different coordination numbers, generation of unique C matrices, 
and analysis of M site stereochemical rationality in terms of spatial 
restrictions on allowable bond angles and distances. Achievement 
of these goals would provide a method of analysis of all possible 
molecular structures for clusters with the same and mixed co- 
ordination numbers at M sites, and sufficiently low nuclearities 
to render the approach practicable. 
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Appendix 

Derivation of R Matrices for a Given Bridging Modality. The Randic 
descending order rule28a for R matrices can be described alternatively as 
follows: (1) elements in the first nonzero row should be in a descending 
order, namely, R,  1 Rqi if i < if; (2) elements in any two columns in rows 
under the first nonzero row should also be in a descending order unless 
the elements in these two columns and in rows above the row in question 
are not all equivalent. The descending order rule implies assigning a 
smaller sequencing number to metal atoms connected to Q atoms with 
higher bridging mode. 

The proctdure for deriving the complete set of R s  for a given bridging 
modality follows a treelike strategy. It starts with the first row for Q,, 
which is initialized so that it, if read as an m-digit number, is the largest 
possible number satisfying the boundary condition set by B. This is a 
valid first-row pattern. Using it as a source pattern and starting at RIm1 
as the source element, Rl,i ( i  = m - 1 + 1, ..., m) are chosen progressively 
as the target element, reducing the source element by 1 and adding 1 to 
the target element to generate new patterns. Next, Rl,m2, Rl,m3, ..., 
are assigned progressively as the source elements, and the procedure IS 
continued to generate further patterns. Those violating the boundary 
conditions or the descending order rule or any duplicates are eliminated 
from the newly generated patterns to give a unique set of new first-row 
patterns. The procedure is repeated by assigning each member of this 
new set as the source pattern and working accordingly until no new 
patterns can be generated (when all source patterns are reduced to the 
smallest possible number satisfying the descending order rule). The 
collection of all new patterns is a complete and nonredundant set of all 
possible patterns satisfying the boundary conditions and the descending 
order rule. 

For each member of the complete set for the first row, a complete set 
of patterns for the second row for Q,, is generated by an analogous 
procedure. Note that (a) the boundary conditions set by B should be 
observed and (b) the descending order rule for rows below the first row 
allows nondescending sequences if the elements in the upper rows in the 
two columns in question are not all equivalent. The procedure is then 
applied to each member of the second-row patterns for a given first-row 
pattern to achieve the complete set of patterns for the third row for Q,,. 
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This, when combined with the given first- and second-row patterns and 
the complementary fourth row for L uniquely determined by eq 10, offers 
the complete set of R s  for a given modality. 

The preceding version is intended to be descriptive. The program 
implemented uses a more efficient variation of this procedure. 

Expansion of R to C Matrices. By defining an R matrix, we have 
actually assigned the distribution of the unit elements along the metal 
atom axis in a corresponding C matrix. To define fully a connectivity 
pattern, we need to complete the assignment of unit elements along the 
Q axis, that is, to expand R to its set of C matrices. The general strategy 
is to expand each of the four rows of R into the corresponding four 
submatrices by progressively assigning unit elements into all possible 
unique positions of these submatrices. All possible combinations of the 
submatrices minus their permutation equivalents are the complete set of 
C matrices. 

A sequence rule similar to that for R is required for elimination of the 
permutation-equivalent C's when R is expanded to C. We term the 
number e, given by reading down the ith column of the submatrix for 
Q,, as the name of the column for the submatrix, and require that 

8, 2 i = 1, 2, ..., m - 1; a = 2-4 

for submatrices whose original R has the condition that R,,+* = R,+l,S-rr, 
unless the names for these two columns in submatrices above the sub- 
matrix in question are not all equivalent. In this case, f ,  # ed,+l (4 1 
a' 2 u),  where a and a'denote the bridging modes. Equivalently, the 
descending order rule should hold for any given two columns in the 
submatrix in question when they are expanded from R elements of equal 
values unless the two columns in the higher submatrices are not identical. 
The descending order rule should also hold for the L submatrix. This 
rule will eliminate most of the permutation-equivalent C ' s  except for 
certain cases with high symmetry, which usually can be identified readily 
if the structures are not too complicated. 

The procedure for expansion of an R matrix begins by expanding the 
first row of R into the submatrix for Q,,. The first column of the sub- 
matrix is always set to be the largest possible name. In assigning the 
following unit elements, it is necessary first to introduce the concept of 
a unique position in order to eliminate the potential row permutations. 
An unoccupied element position C,, is considered nonunique if there is 
an unoccupied element C,f with j ' S  j such that C,? = C,, for i' = 1, 2, 
..., i - 1, viz., if there is a row of smaller sequencing numbers whose first 
i - 1 elements are equivalent to the first i - 1 elements of the row in 
question. Starting from the first unit element of the second column, a 
treelike procedure somewhat similar to that for deriving R s  is employed 
to generate all possible C's. Unit elements are assigned to all possible 
unique positions; those that violate the descending order rule or the 
topological conditions set by eqs 5 and 6 or that are permutation equiv- 
alents are eliminated. 

Similar procedures, except with disregard of the descending order rule, 
are then applied to derive the submatrices for Q,, and Q#,. All possible 
combinations of the three classes of submatrices are made. Those com- 
binations which violate the descending order rule, are permutation 
equivalents, or correspond to structures consisting of discrete fragments 
are eliminated. Note that the descending order rule does not require the 
names for columns of Q,, and Q,, submatrices to be in descending order 
when the neighboring two columns in the upper submatrices are not 
totally identical. Also note that, unlike the situation for the first three 
rows of a given R for which more than one C matrix is usually obtained 
from the expansion, there is only one uniquely determined terminal ligand 
L submatrix for each given R. This submatrix is added to resultant 
combinations to complete the expansion. 


